AFRL-RI-RS-TR-2009-166

Final Technical Report
June 2009

MULTICORE HARDWARE EXPERIMENTS IN
SOFTWARE PRODUCIBILITY

University of Arizona

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88™ ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-166 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

Is/ Is/
WILLIAM MCKEEVER EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

JUN 2009

2. REPORT TYPE

Final

3. DATES COVERED (From - To)
Dec 2007 — Dec 2008

4. TITLE AND SUBTITLE

MULTICORE HARDWARE EXPERIMENTS IN SOFTWARE

PRODUCIBILITY

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-08-1-0024

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jonathan Sprinkle and Brandon Eames

62702F
5d. PROJECT NUMBER
459T
5e. TASK NUMBER
AZ

5f. WORK UNIT NUMBER
MC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Arizona
888 North Euclid Ave.
Tucson, AZ 85721-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Road

Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2009-166

12. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 83ABW-2009-2918 Date Cleared: 29-JUN-2009

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This final technical report was prepared for the Air Force Research Laboratory, under award #FA8750-08-1-0024, titled “MultiCore
Hardware Experiments in Software Producibility.” This report details our findings when taking heterogeneous systems software,
designed for a distributed environment, and running it on a single-core, and later multi-core, computers. Our research outcomes are
significant, indicating that in our case, significant variance was seen in system performance, and that the variance increased with the
number of cores used. We also created some strategies to reduce this variance, namely a weak time triggered infrastructure, which
we imposed upon the system: this strategy significantly reduced the variance of behaviors when trading up to multicore processors.

15. SUBJECT TERMS

Multi-core, Real-time Systems, Testing, Software Modernization

16. SECURITY CLASSIFICATION OF:

a. REPORT
U

b. ABSTRACT

U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF PAGES

28

19a. NAME OF RESPONSIBLE PERSON
William E. McKeever, Jr.

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 739.18

Table of Contents

O YU T o 0. = oYU PP UPUU N 1
PN) Ao o [0 AT] o O RO P PR OPRTRPOPRTOPROt 2
3.0 Methods, AssumMpPLions, @aNd ProCEAUIES.......uiiiiiicciiiieeee ettt e e e ectrre e e e e e esbrere e e e e e e e saareareeeeeessnnsnnnnes 5
I o Tor= Y I\ AV =2 1 d o o SRR 5
3.2 High-level Navigation and Planningcccuuiiiiiii ittt e e e e e e e sete e e e s e s s vrnee e e e e e e ennnns 8
e B o1 g T =T] =Y I =] U o J SRR 8
3.3.1 Operating System and MiddIEWAreuevieii it e e e e e s re e e e s 8
3.3.2 MUILICOrE HAardWarecooieieiiieciee ettt s st s be e e sme e e sareesnee s 8

R T LV 1Y ool 1a |l Mo Y= ={ 1 o TS 9

3.4 BaSiC SIMUIATION c...eeiiieceeet ettt et e e st e s b e e s e n e e s e e e sabe e e sneeesareesnreeeane s 10
3.5 Logical Execution Time SiMUIGtioNSuviiiieii et e e e e e e e e s e e s rveane e e e e e e ennes 11
4.0 ANALYSIS AN RESUILS .. .uuuiiiiiiieeiecciiiee et e e e e re e e e e s e et te e e e e e eesaabtaeeeeesesnnssstneaeeessasnsennaeeessnnsrnns 14
S 0N 6] g Tl [V 1] o] o - TP PP SRRN 16
5.0 REFEIENCES. ...ttt ettt st et st b st eae e eb e b se bk et eb ses b b et e b st eb et ebenebeb et et neas 20

List of Figures

1. A crash, and a finish, of the simulation from the same initial
o700 [11[0] 0 =

N

Variance between the functional behavior of two successive runs

8. Difference in w0 of all path sets across all
MIACIINES . .. e e e e e

©

All plans (p = (Wo....wy)) for every run of the letsim
][0T F=Y 1 o] o H PSPPI

10. Success and failure rates by processor
=T 01 =T D =

List of Tables

Table 1: Machines utilized in this @Xperiment.........c.uviiee i 9
Table 2: Basic simulation success rate, by Machineg.c..cccovvviiivieiiiiiiiic e 11
Table 3: Logical Execution Time simulation success rate, by machine........ccccccccevvevvivevennieeinnnn, 13

Acknowledgements

This work analyzes software built with tremendous effort by the Sydney-Berkeley Driving Team, which
entered the DARPA Urban Challenge in 2006. Team members who performed work tangential to that
described in this effort include Ben Upcroft, Michael Moser, Alen Alempijevic, Ashod Donikian, Alexei
Makarenko, Will Uther, Robert Fitch, Humberto Gonzalez, Esten Grgtli, Todd Templeton, Eric Chang, J.
Mikael Eklund, Pannag R. Sanketi, David Johnson, Jan Biermeyer, Vason P. Srini, Christopher Brooks,
Mark Godwin, and many others who donated their time and efforts.

Abstract

This final technical report was prepared for the Air Force Research Laboratory, under award #FA8750-
08-1-0024, titled “MultiCore Hardware Experiments in Software Producibility.” This report details our
findings when taking heterogeneous systems software, designed for a distributed environment, and
running it on a single-core, and later multi-core, computers. Our research outcomes are significant,
indicating that in our case, significant variance was seen in system performance, and that the variance
increased with the number of cores used. We also created some strategies to reduce this variance,
namely a weak time triggered infrastructure, which we imposed upon the system: this strategy
significantly reduced the variance of behaviors when trading up to multicore processors.

1.0 Summary

We present the results of a series of experimental simulations of an autonomous ground vehicle,
performed on various single core, and multicore processing platforms. Independent runs of the
simulation (from the same initial conditions, on the same machine) produce discrete variances in the
functional behavior, one of which is a “crash” where the simulated vehicle runs into a barrier, and
cannot continue to function. Our simulations examine discrete differences in the success of avoiding this
“crash”: namely, these machines with multiple cores are more likely to “crash” than machines with
single cores. In fact, the more cores a machine has the more likely it is to “crash.” We provide some
analysis of this phenomenon, including a hypothesis that the introduction of time-triggering for one
particular component would significantly improve the chances of success. We conclude with the results
of this lazy time-triggering, which verify our hypothesis, and some thoughts on how future work can
reduce the functional variability in such simulations by design.

2.0 Introduction

Control of autonomous ground vehicles involves algorithms and design techniques from the disciplines
of control, real-time systems, robotics, and software. As frequently observed in cyber-physical systems,
the system designers may need experience in multiple areas, and knowledge of how control,
communication, and computation interact in order to put together a system that behaves as expected.

In this effort, we approach the abstract scenario of a cyber-physical system that is “upgraded” from a
single core processor to a multicore processor. Will the new system behave identically? Are certain
observables likely to indicate fragility? In this approach, we examine the robustness of a somewhat
fragile cooperation between two data-driven components capable of running on the same core, two
different cores, or two different machines, when those components are deployed on various machines
with various single or multicore processors.

Our domain focus, autonomous ground vehicles, grew out of a previous collaboration through the
Sydney-Berkeley Driving Team. During that collaboration there was some empirical evidence of
instability, and certainly vehicle behavior was sometimes erratic. Symptoms included chattering in the
steering wheel, hesitant acceleration and braking, and unpredictable behaviors at certain areas of the
course. Successive runs would occasionally have different behaviors, albeit only slight differences.

After the formal collaboration ended, we began to analyze the behavior of the ground vehicle in
simulation, and fortuitously observed that a particular area of the course (we call it, informally, “dead-
man’s curve”) occasionally resulted in the simulation ending abruptly, as the vehicle collided with a
simulated barrier. After a few runs, we hypothesized that the same initial conditions could produce
these two discrete behaviors on the same machine in successive runs. The discrete behaviors we see
(crashing, and finishing) are exemplified in Figure 1.

What are the indicators? Without introducing the technical terms yet, some measurable discriminators
between runs on the same machine produce some startling differences as the number of cores increase.
That is, by comparing the planned paths (using naive comparison techniques) between two runs, we see
that an increased number of cores results in less overall stability of the simulated vehicle. One example
naive comparison (shown in Figure 2) compares the first planned waypoint at each timestep of the
system’s execution. However, differences in processor speed mean that faster machines will be able to
execute some components (namely, those components that are dataflow triggered) more frequently,
and will thus produce additional paths. This observation prompted us to ask the question: “How should
we be comparing the behaviors of individual components of these cyber-physical systems, if not by their
streamed output from the same initial conditions?”

The answer to this question we believe is still open, and we do not answer it in this report. However, we
do begin to analyze a particular discrete behavioral difference between various runs of an autonomous
ground vehicle simulation: namely, that the number of times our vehicle fails to pass dead-man’s curve
should be a valid discriminator of the stability of our system across hardware changes. In this effort we
ask:

e How can we improve the success rate?

e Are there integration strategies that mitigate the failure rate?

e Are there lightweight methods (that do not effect change in the binary code) to perform this
reduction?

Each of these questions are addressed in this report and its analysis.

Finally, we address the question: What makes this system cyber-physical, and not just simulation? The
difference is that these experiments, while fully simulated, present the challenges of the intersection of
traditional computation, control, and communication as a joint problem. Computational tasks that are
triggered by communication (i.e., dataflow) change when computational platforms change. This can
affect the stability of the system from a control perspective. When the control stability is not certain,
behavioral differences are amplified, which results in a change in computational (behavioral) output
from the same initial conditions. In a rough sense, we have happened upon a chaotic system, where a
change in computational platform increases the chaos.

Happily, we have also noticed that what was initially perceived as an intermittent software bug is
actually a system integration flaw, now a logical error. This was only noticed because we amplified the
problem sufficiently. We therefore posit that studying this example is more than just regressive analysis
of one particular implementation, but is an applicable abstraction for future analysis. We further discuss
this position in the future work section. Next, we discuss the control and computation tasks central to
this system.

(a) The vehicle crashes into a simulated barrier.

10.00 m/s

(b) The vehicle passes the simulated barrier, and simulation terminates.

Figure 1: A crash, and a finish, of the simulation from the same initial conditions.

3.0 Methods, Assumptions, and Procedures

We are using the coupled algorithms of model-predictive control, and dynamic waypoint specification,
as a basis with which to judge the fragility or robustness of our system to upgrade to multicore
processors. Specifically, our legacy software, created using component-based design techniques, allows
us to isolate these behaviors in single executables, which may operate multiple threads for their
behavior.

Generally, components for this system are developed by algorithm experts who understand well what
their component should do computationally. Unfortunately, the behavior of composition of these
components emerges, and is not engineered by design. A more principled system design might have
considered the semantics of the composition of these heterogeneous components (as discussed in [1]),
though such integration is difficult to enforce as a programming styleguide. It is much more appropriate
to enforce this through interface calls, and “glue” code. We discuss this in the conclusion section as part
of our future work.

Two important components under study are the local navigation component (dgclocalnav), and high
level planner (highlevelplanner) , and each component is legacy source code written as part of the
Sydney-Berkeley Driving Team, which was a joint entry into the DARPA Urban Challenge (i.e.,
autonomous ground vehicles) [2, 3]. Neither piece of software is modified from its use in that
competition for any of these experiments.

3.1 Local Navigation

The local navigation component (dgclocalnav) provides control inputs to the vehicle to follow a set of
waypoints, while avoiding any obstacles not observed by street level navigation. The local navigation
component receives a set of waypoints from highlevelplanner, and plans a path through various
obstacles, and on the road, to follow that path. The component is extremely computationally intensive,
and runs in multiple threads to gather input data, as well as process data as it is received. The internal
behavior of this component utilizes model-predictive control [4] and previous work by the authors [5]
has indicated suitability for use in real-time systems.

The inputs to the dgclocalnav component are the path plan (received from highlevelplanner, discussed
next), the drivable grid (see [6]) that shows all local obstacles, the current state of the vehicle (x, y, z, x/,
y’, [, etc.), and other information such as the lanes and data from the vehicle odometer. Note that,
perhaps not intuitively, the provided interface for the path plan actually receives information. This is
contrary to the notion that a component provides data over a provided interface, and receives data over
a required interface; this idiosyncrasy is by design.

All Waypoints Distance Difference Histogram

2500 1

2000 1

1500 1

1000 1

50D 1

a
0.000 6.631 13.261 19.892 26.522 33.153 38.783 46,414 53.044 53.675

Difference Counts

(@) Two successive runs on a dual core machine, compared functionally.
All Waypeoints Distance Difference Histogram

3500 I I I I : : 1

3000 4

2500 .

2000 .

1500 1

1000 1
500

a
0.000 B.T45 13488 20234 28979 33724 40468 47213 53858 E0.702
Ditfarenze Counts
(b) Two successive runs on a quad core machine, compared functionally.

Figure2: Variance between the functional behaviors of two successive runs seems to increase with the
number of cores

The outputs from dgclocalnav are an array of vehicle inputs, which control the steering wheel angle, and
the desired velocity of the vehicle, at future timesteps. The component can provide inputs over a
predetermined horizon, say n seconds, and a sufficiently long horizon can affect the order of magnitude
for which the highlevelplanner component (producing the set of goal waypoints) must execute in order
to prevent the dgclocalnav from running out of desired waypoints.

Each waypoint received by dgclocalnav contains position and heading information, as well as tolerance
levels for achieving the desired position. More formally, a waypoint w = (X, ¥, 3, d:o;, Ol Vimaxw tmax), Where
(x, y) represents the desired position of the vehicle, 6 represents the desired heading angle of the
vehicle when it arrives at (x, y), d., and 9, represent tolerances on distance from (x, y) and heading,
respectively, and v, and t,. represent maximum allowable speed and turnrate, respectively,
permitted to arrive at the desired position. When highlevelplanner is invoked, it determines, given the
current actual position of the vehicle, a sequence of waypoints the vehicle should follow in order to
proceed towards its goal and avoid obstacles.

Each such sequence is referred to as a plan. A plan p =(wgwsy,...,w,) consists of up to 5 waypoints.
highlevelplanner will emit a new plan each time it is invoked, regardless of whether the most recently
emitted plan has been completely executed by the local navigation.

When simulating the vehicle’s traversal around a rectangular course, the control software iteratively
produces plans and attempts to carry out those plans. A run R =(pg,p1,Ps...,.Pm) is a sequence of plans
produced by the high level planner during the simulation of a single traversal of the driving course.
Depending on its execution rate and the rate at which the vehicle is moving, the highlevelplanner may
emit successive plans which are nearly identical.

Alternatively, at times, successive plans can indicate vastly different positions on the course. During our
analysis, in order to establish consistent results, we simulate the course traversal multiple times on a
single machine, and collect the results for each run. A runset RS =(rg,ry,r5,...,1i) is a set of simulation runs,
each of which executes from identical initial conditions over the same course.

Our approach seeks to isolate the impact of the computation platform on which the system executes on
various observable results—namely, the runsets, and the final behavior of the system (crash, or
success). We gather runsets from a variety of machines, from dual-core uni-processor machines to quad-
core, dual-processor machines.

3.2 High-level Navigation and Planning

This component produces a set of up to 5 waypoints for dgclocalnav, with the goal of guiding the
autonomous ground vehicle to certain checkpoints. We used this component in binary form (i.e., its
sources are unavailable).

The highlevelplanner component subscribes to inputs of type gridmap (a local area that details
obstacles), lanes (a series of boundaries that show where the road should begin and end), and considers
the overall map of the drivable area, and the current objective waypoint (a so-called checkpoint,
perhaps hundreds of meters away), in its calculation. Its output is a path plan, as discussed above, that
avoids large obstacles, and solves the shortest path algorithm [7, 8] for the overall map to the next
checkpoint. The path plan, as produced, generally is on the order of 1-10 meters, and directs the vehicle
toward the next checkpoint by selecting a few nearby waypoints that will complete the path to the
checkpoint.

For stability, running this component on the order of seconds, instead of milliseconds, will still provide
waypoints for the vehicle, given that these waypoints are several meters ahead of the vehicle, which is
traveling at a maximum of 3 m/s.

3.3 Experimental Setup

We present a brief discussion of the important simulation topics for this experiment. As the scenario
under study is in the domain of autonomous ground vehicles, we have various robotics, vision, control,
and navigation tasks communicating with one another. The legacy system under study has several
framework choices which we inherit for study in this application.

3.3.1 Operating System and Middleware

All machines are running Kubuntu 6.10, and machines with multiple cores receive the multiprocessor
scheduling, assignment, and preemption as defined in that kernel. We did not override any of those
behaviors, and leave all decisions regarding such assignments and behaviors up to the kernel. To
preserve some similarity across platforms, however, we ensure that the exact version of all machines
(with respect to the software) is identical.

In order to facilitate a multi-computer (distributed) implementation for the physical system the system
under simulation utilized the Ice middleware solution [9], version 3.2.0. All machines ran their own
registry, and database exchange components.

3.3.2 MultiCore Hardware

For this analysis we utilized four classes of machines, as shown in Table 1. For clarity, we duplicate the
OS information discussed previously in this table.

3.3.3 Waypoint Logging

The legacy system did not include the capability to log speculative plans (i.e., the planned waypoints

which the local navigator needed to follow). We followed our policy of introducing new components,

rather than modifying existing ones, and introduced a waypoint logger which logs all waypoint paths

passed to the dgclocalnav component to a text file. The planning paths are ordered, but their time is not

considered important. For each new path plan, the ordered set of waypoints is listed.

This logging permits regressive analysis, so that we can analyze the various idiosyncrasies of the

system’s behavior on different multicore processors. Recall that our goal is to reduce fragility of this

system, and in order to reduce the fragility, we must have some metric against which we can compare

our strategies.

Table 1: Machines utilized in this experiment

Machine Name

Processor Type

Processor Details

Operating System

macphee Single Core Allocated as one Linux Kubuntu 6.10
processor through (Kernel 2.6.17-10-
VMWare. Hardware is | 386), (VMWare
Intel Core 2 Duo, 2.4 running on Mac OS X
MHz Host)

geezer Single Core AMD Athlon 64 3000+, | Linux Kubuntu 6.10
1.98GHz 512KB (Kernel 2.6.17-10-386)
Cache

labmachine Single Core Intel Pentium 4 CPU, | Linux Kubuntu 6.10
3.00GHz 1MB Cache | (Kernel 2.6.17-10-386)

dimble Dual Core Intel Core2 Duo CPU, | Linux Kubuntu 6.10
E4500, 2.20GHz 2MB | (Kernel 2.6.17-10-386)
L2 Cache

beames-desktop | Quad Core Intel Q6600, 2.4Ghz, Linux Kubuntu 6.10

2x4MB L2 Cache

(Kernel 2.6.17-10-386)

feverstone Dual Processor, Quad | Intel Xeon CPU, Linux Kubuntu 6.10
Core X5460, 3.16GHz, (Kernel 2.6.17-10-386)
2x6MB L2 Cache
hardcastle Dual Processor, Quad | Intel Xeon CPU L5420, | Linux Kubuntu 6.10

Core

2.50GHz, 2x6MB L2
Cache

(Kernel 2.6.17-10-386)

3.3.4 Experiment Execution

We create a simulation instance, which runs for a period of time and terminates. During this time, the
vehicle has opportunity to pass dead-man’s curve and proceed down the home stretch. Our simulation
time is 200 seconds from the time that all components have started up. A script creates components in
the order of dependency (i.e., starting components in the correct order), and the script and all of its
processes is forcefully killed after the appropriate time.

During the execution of this run, the important data which we analyze is recorded to a text file. The text
file is named based on the machine name, and the times which that run were initiated.

A series of runs, varying between 50 and 500, depending upon machine strength and expected uptime,
was performed on each machine, in order to mitigate the effect of spikes in the success rate. All
components were executed on the same machine (i.e., a distributed simulation was not used).

3.4 Basic Simulation

The basic simulation is described in Figure 3. Components include the vehicle controller (car),
localization component (faithlocaliser3d, imu), obstacle detection components (laserl, gridmap), and
control and planning components (previously discussed).

dﬂu ST
- o
odo r 1 Mloc tow
] tow
Car odo u——‘ n::tm ;:‘a:u-
i
HoP h|ghlevelplanner—‘
L—nodo loc H— | ﬁ: 1
: Tr—
_ B e '
e faithlocaliser3d Tari pet 3 Dpat pet It
ae I3 L—@i=n
: dgclocalnay waypointlogger
laser Hilloc o H—
Dias agm F——
gridmap

Figure 3: The basic simulation layout.

In this simulation, each component utilizes some heterogenous model of computation. For example, the
laserl component runs whenever it receives new laser input from the 3d simulation environment
(Gazebo). Such updates come at the rate of the machine’s free time, generally on the order of 20 Hz or
more.

Because highlevelplanner performs blocking reads on its inputs, the receipt of inputs from the vehicle’s
state, the localization information, the drivability map, and the lanes information, the receipt of each of
these items means that highlevelplanner will fire, and produce a new path. Each of the components
feeding highlevelplanner data, however, runs at several Hz, which means that highlevelplanner will also
run at several Hz. As we previously discussed, this frequency of execution is not necessary for stability.

In fact, this frequency of execution may introduce instability in the overall system. Our hypothesis is that
reducing this frequency will measurably reduce the number of times that the system will crash.
However, we first point to the number of successful runs by processor for this basic simulation.

10

In Figure 4 we see that the probability of success to pass dead-man’s curve drops off dramatically as the
number of cores increase. Detailed percentages are given in Table 2. Note that the two 8 core machines
run at approximately 25% expected success, which is 1/3 of the success rate of the single core machine.
Clearly, there is some impact on the number of cores on probability of passing dead-man’s curve. We
now introduce some methodology to reduce the frequency of highlevelplanner, with the expectation
that this will improve the chance of success.

0.9

0.8 -

0.7

0.6 1

0.5
O Bawicsim

0.4

Probability of Success

0.2 1

0.1 ¢

1c (2.4 GHz, 1c (geezer) 1c (3.0GHz) 2c (2.4 GHz) 4c (beames) Bc (2.5 GHz) 8c (3.1 GHz)
vmware) Machine

Figure 4: Rates of success for the basic simulation, across hardware platforms.

3.5 Logical Execution Time Simulations

The notion of logical execution time (LET) semantics is to provide a constant execution time for a
process to execute in a real-time system, with constrained read and write behaviors. Languages such as
Giotto [10] enforce LET semantics for all processes in the system. Solutions using LET semantics tend to
scale well, as the logical release and read of outputs and inputs means (by design) that faster processors
cannot introduce race conditions [11].

Table 2: Basic simulation success rate, by machine.

Machine Name # Cores | Success Rate
macphee 1 0.7678
geezer 1 0.6567
labmachine 1 0.0.6400
dimble 2 0.6331
beames-desktop | 4 0.3800
feverstone 8 0.2426
hardcastle 8 0.2645

11

t:irTn {1
odo ¥] i jloc tow [1
Hogm tow [
. Udon-—‘ _qu:t Ian
L FrPt highlevelplanner
f ’ |
H odo loc BH— e |
agrm f 1 F 1
- e
] 7 faithlocaliser3d e Pat ¥ Dpst pat— it path)
|==03 L+di=n
daclacalnay waypointlogger hipthrottle
laser Hllos loe F—
Oi== ogm [F
1
. f
aridmap o
timetrigger

Figure 5: the letsim simulation layout.

In our system, the amount of code and the constrained operating system environment precludes a full
LET semantics implementation. However, we hypothesize that a lazy form of LET semantics, where the
frequency of execution of certain components is limited by time triggering (rather than data triggering
through pure dataflow), will reduce the behavioral discrepancies (though it will not eliminate them).

We now introduce a new component, hlpthrottle, which is inserted between the waypointlogger and
highlevelplanner. The semantics of hlpthrottle is that it fires every T seconds, and at that time, it
performs a blocking read on its input interfaces, and fires once each of those interfaces is satisfied with
new data. Once it fires, its output is produced in its provided interface. There are of course alternatives
to these semantics, though for this application the frequency of execution of highlevelplanner is such
that we can depend on a new waypoint path in much less than one second.

We are able to achieve a time-triggered behavior using the timetrigger component, whose
fundamentals were out of the scope of this effort. In short, it uses POSIX messages to wake up at a
specified time, or a set frequency, and upon wake-up it produces a message for all components
subscribed to it. So, in fact, the hlpthrottle subscribes to timetrigger, and blocks on receipt of a trigger,
and then blocks on receipt of a waypoint path. For these experiments, we use T = 5[s].

There are several advantages to obtaining time-triggered behavior by inserting a new component
between our existing components, rather than modifying existing component code to perform a
blocking read on the trigger. We maintain binary compatibility with each of our existing components,
including any subtleties in their processing. Each of these components, therefore, will not modify its
current methodology of receiving data. Ongoing processing will continue, and components that produce
a refined view of the world based on new data will continue refining their data, even though snapshots
of the refined world may change.

12

There are also disadvantages, in that we are increasing processor utilization (by adding a new
component), and existing utilization by each component is maintained. However, we look past these
subtleties for now, and examine the results of these simulations across several hardware platforms.

In Figure 6 we still see a drop off as the number of cores increases, but it is not as dramatic as with the
basicsim simulation. In fact, we can compare the success rate of the letsim simulations to that of basic
simulations, and see that we improve the probability of success dramatically. So, why do we see such a
dramatic reduction in failures? In order to address this question, and justify our hypothesis, we provide
some analysis of these results.

0.9

=
®

o
-

=X
@

Bletsim

Probability of Success
= o
£ w

2
w

=
]

0.1

ic (2.4 GHz, ic (geezer) 1c (3.0GHz) 2c (2.4 GHz) 4c (beames) 8c (2.5 GHz) 8c (3.1 GHz)
vmware) Machine

Figure 6: Rates of success for the letsim simulation, across hardware platforms.

Table 3: Logical Execution Time simulation success rate, by machine (compared to basic simulation
success rate, by percent improved).

Machine Name | # Cores | Success Rate | Improvement %
macphee 1 0.9200 19.82
geezer 1 0.0.8700 32.48
labmachine 1 0.0.895 39.84
dimble 2 0.8074 27.53
beames-desktop 4 0.7185 89.07
feverstone 8 0.6450 165.86
hardcastle 8 0.6831 158.26

13

4.0 Analysis and Results

In order to better understand the behavior of the vehicle simulation, we plot and examine simulation
results from a variety of perspectives. We have two primary simulation modes to consider: “basic”
simulation, referred to as basicsim, and the simulation integrating the LET semantics, referred to as
“letsim”. We have executed multiple runs of the simulations across several processors, as described
previously. Figure 7 provides a plot of all waypoints generated over 56 runs in a basicsim simulation
executed on the macphee machine. We partition each plan by waypoint and collect waypoint classes to
form distinct plot series. A first-order analysis indicates that the waypoints fall within the same range,
covering the path of the driving course. The initial position of the vehicle on the path is at approximately
(20, 0), and proceeds in a counter-clockwise direction.

Plarned {X,¥} position, All Haypoints, Basicsin, Hacphee

148 T T -.u m T } T T T T
128 * +m

188 7

88 g

68 A

48 1

28

_4“ 1 1 1 1 1 1 1 1 1
=48 =28 a 28 48 68 &8 188 128 148 168

Desired Position

"nacphee_basicsin_wpA_Data”™ + "nacphee_basicsin_wp3_Data®™ O
"macphee_basicsin_wpl_Data” # "macphee_basicsin_wpd_Data”
fmacphee_basicsin_wp2_Data” *

Figure 7: All plans (p =(wy,...,wy)) for every run of the basic simulation on machine macphee. Each w;
is shown in a unique representation.

14

Dead-man’s curve is located at the upper-left corner of the course, ending at approximately position (20,
135) (refer to Figure 1a.). The plot shows distinct areas on the course path absent of waypoints in any
plan on any simulation run. The highlevelplanner plans in reverse, using a checkpoint as a destination,
and synthesizing intermediate waypoints to direct the vehicle to this location. Some maneuvers require
dense planning, with waypoints being placed close together. Other maneuvers, once committed, require
little planning, such as the completion of a turn or traversing a straight path. Also observable from the
plot are, in some places, wide bands of waypoints, within and crossing series. This run-to-run variance in
waypoint placement illustrates stability issues in the controller, which cascades as state changes,
requiring varying path plans across runs. The impact of computational platform and power on stability
indicates the cyber-physical reality of these issues.

Figure 8a plots the position of the first waypoint, w0, of each plan over all simulation runs executed on
our five different target machines. The significant variance observed over the simulation course in Figure
7 is not as pronounced in this plot. This is due to the fact that this figure examines only w0, the initial
waypoint in each plan. A careful examination of the plot also reveals that not all series result in
waypoint placement along the same locations in the course. Different simulation runs on different
machines produce similar, but not identical results. Further, although the inter-series variance is not as
pronounced, variance can be observed, particularly in the course section leading to dead man’s curve,
and the path following dead-man’s curve.

Figure 8b repeats the simulation from Figure 8a, but with the application of letsim semantics. One major
impact of the application of letsim is a significant reduction in the number of waypoints processed
during the simulation. The reduction is due to the fact that the hlpthrottle component only allows
waypoints to be emitted to the dgclocalnav at appropriate times. Only those emitted waypoints are
logged and processed. Immediately obvious from the plots is the lack of inter-series variance. We draw
two distinct conclusions from the letsim plots. First, letsim simulation significantly reduces inter-run
variance on a single machine. Second, letsim reduces inter-machine variance. The primary contention
discussed above is that the execution platform running the simulation directly impacts the controller
stability. The lack of variance in this plot indicates that the inclusion of letsim has significantly reduced
the impact of machine platform on variance.

Figure 9 illustrates all waypoints from all runs of a letsim simulation executing on the beames-desktop
platform. Similar results are indicated, with significantly reduced inter-run variance.

15

5.0 Conclusions

Admittedly, these experiments show that the presented design is somewhat fragile. A critical look at the
use of time-triggering could argue that addressing the fragility through more sophisticated data-driven
models is appropriate. We posit that such an approach may still lack robustness across multiple
hardware platforms unanticipated in the future.

Our work in this effort does not address the redevelopment of algorithms, but rather their integration in
such cyber-physical systems, where the physical platform’s behavior will always have some behavioral
variances. In our case, the fact that intrinsic behavioral differences introduce functional differences
shows that our simulations show the same kinds of variability that we expect from the physical platform,
and the fact that we are decreasing functional differences using this integration scheme should give
higher confidence that such schemes are appropriate for the design of cyber-physical systems.

16

Planned {x,Y} position, Maypoint @, Basicsim All machines

148 . ———
128 b
188 - F 2
88 o r Z
60 - 4 f .
48 1
#
20 [B &
ef _
N M |
—a8 L 1 L L L L L L
=48 =28 B 28 48 68 88 188 128 148 168
Desired Position
*dinble_basicsin_wpB_Data” + ‘beanes-desktop_basicsin_wpB_Data”
’feverstone_basicsin_wpB_Data’ X *nacphee_basicsin_wpB_Data”
*hardcastle_basicsin_uwpB_Data” E
(a) All basic simulations.
Planned {X,Y} position, Haypoint 8, Letsin all nachines
148 T T — T
128 b
188 b
88 b
6B - b
48 r b
28 - b
al J
_28 - . -
—48 1 1 L L L L L 1
-48 -28 1] 28 48 11! 88 188 128 148 168
Desired Position
"b=desk_let_wpB_Data” # "he_let_wpB_Data” * "mp_let_wpB_Data”

*din_let_wpB_Data” *fev_let_wpB_Data” O

(b) All letsim simulations.

Figure 8: Difference in wO of all path sets across all machines, based on the basic simulation

(no throttling) and the letsim (time triggered behavior).

17

Flanned {+x,Y} position, all waypointsz, letsin, beanes—-desktop

148
128
1AR [

g8

17

28

v e, | | | |

M

+”‘M ¥

28

4a [51:] 8a 188 128 148 168
Desired Position

'heanes—-desktop_letsin_wpB_Data® + ‘beanes—-desktop_letsin_wp3_Data® O
"beanes—-desktop_letsin_wpl_Data® = ‘beanes-desktop_letsin_wpd_Data”
‘beanes=-deshktop_letsin_uwp2_Data” #*

Figure 9: All plans (p =(wy,...,wy)) for every run of the letsim simulation on machine beames-

desktop. Each w; is shown in a unique representation. Compare to Figure 7.

18

o
o

DO Basicsim
DOlietsim

o
in

L
=

Probability of Success

o
w

0.2

0.1 1

1c (2.4 GHz, 1c (geezer) 1c (3.0GHz) 2c (2.4 GHz) 4c (beames) 8c (2.5 GHz) Bc (3.1 GHz)
vmware) Machine

Figure 10: Success and failure rates by processor architecture

e (Can we improve the success rate? Yes. Our success rate improved for all classes of hardware,
and for classes of hardware with more core, we saw significant improvements (up to =150%).

e Are there integration strategies that mitigate the failure rate? Yes. We showed that a lazy form
of time-triggering dramatically mitigated this failure rate.

e Are there lightweight methods (that do not effect change the binary code) to perform this
reduction? Yes. For middleware-integrated systems, the introduction of new “throt-tling”
components can intercept, and pass along, data in a more controlled manner than the original
designers intended.

We see a rich agenda of future research in utilizing this example in the abstract. How can two behaviors,
measured on significantly different computational platforms, and using the same initial conditions, be
compared for equivalence? What epsilon differences in behavior are sufficiently similar? Can chaotically
timed dataflow components be tamed with lightweight time-triggered throttling?

There are also application-specific questions that can now be asked. Is the use of a 5-second period for
this component the optimal? What analysis can be done to determine the necessary frequency? Is this
frequency tied to the vehicle platform under simulation and its fundamental architecture, and/or to the
control strategy used to control that platform? Answering such questions can address semantic issues of
how future code can be generated to appropriate values based on a target vehicle platform. Additional
work in code generation can synthesize integration code that enforces a particular model of
computation for the integrated heterogeneous system.

19

6.0 References

[1] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and C. Goble. Heterogeneous composition of models of
computation. Technical Report UCB/EECS-2007-139, EECS Department, University of California,
Berkeley, Nov 2007. An earlier version of this paper was published in ICCS. A later version has been
accepted for publication in Future Generation Computer Systems (FGCS), Elsevier.

[2] B. Upcroft, M. Moser, A. Makarenko, D. Johnson, A. Donikan, A. Alempijevic, R. Fitch, W. Uther, J.
Biermeyer, H. Gonzalez, E. I. Grgtli, V. P. S. Todd Templeton, and J. Sprinkle. DARPA Urban Challenge
Technical Paper: Sydney-Berkeley Driving Team. Technical report, University of Sydney; University of
Technology, Sydney; University of California, Berkeley, June 2007.

[3] B. Upcroft, A. Makarenko, M. Moser, A. Alempijevic, A. Donikian, W. Uther, and R. Fitch. Empirical
evaluation of an autonomous vehicle in an urban environment. Journal of Aerospace Computing,
Information, and Communication, 4(12):1086-1107, Dec. 2007.

[4] F. Allgower and A. Zheng, editors. Nonlinear Model Predictive Control, volume 26 of Progress in
Systems and Control Theory. Birkhauser Verlag, Basel-Boston-Berlin, 2000.

[5] J. Sprinkle, J. M. Eklund, H. J. Kim, and S. S. Sastry. Encoding aerial pursuit/evasion games with
fixed wing aircraft into a nonlinear model predictive tracking controller. In Proceedings of the 43rd
IEEE Conference on Decision and Control, volume 3, pages 2609—2614, December 2004.

[6] A. Elfes. Occupancy grids: A stochastic spatial representation for active robot perception. In Proc. 6th
Conference on Uncertainty in Al, 1989.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269-271, 1959.

[8] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100—- 107, 1968.

[9] M. Henning. A new approach to object-oriented middleware. Internet Computing, IEEE, 8(1):66-75,
Jan-Feb 2004.

[10] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: a time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84—99, Jan 2003.

[11] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable code generation for dis-tributed giotto.
SIGPLAN Not., 40(7):21-30, 2005.

20

